
The State of
Vulnerabilities in
Linux Distributions

Containers have exploded in popularity within the last decade. They offer developers

and organizations agility in the development cycle, accelerating application

development, simplifying deployment, and consuming fewer computing resources.

However, as container usage has grown, container image security has become more of

a priority. In fact, a recent report revealed that over two million container images hosted

on the Docker Hub repository are afflicted with at least one critical vulnerability.

Containers are composed of a base image and additional layers which may contain

dependencies, applications, or other filesystem changes. Most developers start with

a base image and then build/add layers on top of it. Popular base images are basic or

minimal Linux distributions, such as Debian, Ubuntu, Red Hat, Centos, or Alpine.

In this report, we will take an in-depth look at the security vulnerabilities found in the

most popular Linux distributions, including analysis of:

The most common vulnerabilities

The distribution of vulnerabilities

Longitudinal trends in vulnerabilities over several years

The most prevalent CWEs in each Linux distribution

1The State of Vulnerabilities in Linux Distributions by

Vulnerabilities Across Linux Distributions

Ubuntu
31.33%

CentOS
16.64%

Debian
31.21%

Alpine
4.16%

Redhat
9.55%

Red Hat
16.66%

2

Alpine has the fewest number of vulnerabilities across the above Linux distributions.

Considering that Alpine has a smaller footprint and comes with built-in security

protections, this is not too surprising. Debian is one of the most popular distributions,

so the high number of vulnerabilities might be expected. Ubuntu is based on Debian,

so it should also come as no shock that the two distributions have similar vulnerability

counts. CentOS is based on Red Hat and both of these distributions have a similar

number of vulnerabilities as well.

The State of Vulnerabilities in Linux Distributions by

3

Vulnerability Counts Over Time

2016

Year

2017 2018 2019 2020

Alpine, CentOS, Red Hat Debian & Ubuntu distributions only

11433

16180

13901

13989

7603

20162015

6796

As container and Docker adoption has grown over the past decade, so too has

the number of vulnerabilities in the distributions. Container adoption picked up in

2015/2016, and we can see that the number of vulnerabilities peaked in 2017. 2020

saw a steep drop in vulnerabilities, but we need more data before we can say if it was

the start of a trend or an anomaly.

The State of Vulnerabilities in Linux Distributions by

Vulnerabilities in Container Distributions by Year

All distributions saw fewer vulnerabilities in 2020, though more data is needed to

determine if this was the start of a lasting trend or more transitory. CentOS experienced

a consistent upward trend in the past 5 years, while Red Hat saw fewer vulnerabilities

starting in 2017. Debian and Ubuntu had similar vulnerability counts, which is

understandable given that Ubuntu is based on Debian.

4

2020 2019 2018 2017 2016 2015

YearCentOSAlpine UbuntuRed Hat Debian

150

1492

1842
2106

218

1730

2915

4610

4851

1984

422

1381

1601

3384

4872

3454

2303

1327

859
390

1300

1964

The State of Vulnerabilities in Linux Distributions by

5

Most Frequently Seen Vulnerabilities

CWE-119
Buffer Errors

CWE-20
Improper Input Validation

CWE-125
Out of Bounds
Read

CWE-125
Use After Free

CWE-200
Exposure
of Sensitive
Information

CWE-476
Null-pointer
Dereference

CWE-787
Out if Bounds Write

CWE-399
Resource
Management
Errors

CWE-264
Permissions,
Privileges
and Access
Controls

The State of Vulnerabilities in Linux Distributions by

Now, let’s look at some of the most commonly found vulnerabilities in these Linux

distributions.

Buffer Errors (CWE-119) topped our list of most frequently seen vulnerabilities by a

large amount. We also discovered numerous instances of CWE-125 (Out-of-bounds

Read) and CWE-787 (Out-of-bounds Write) across the Linux distributions.

It is important for developers to be aware of frequently observed coding errors that

result in vulnerabilities and use best practices to avoid such issues.

6

CWE 125: Out-of-bounds Read

This ranks among the top 3 in MITRE’s top 25 most dangerous software weaknesses

and belongs to the same family of vulnerabilities as CWE-119. In fact, CWE-125 is

classified as a child of CWE-119. Per MITRE’s description, this vulnerability occurs when

“the software reads data past the end, or before the beginning, of the intended buffer.”

Typically, this can allow attackers to read sensitive information from other memory

locations or cause a crash. It’s not surprising that this is a common issue, as many

vulnerabilities are from system libraries, often written in C or C++, which may have less

memory safety built-in.

Related weaknesses include Buffer Over-read (CWE-126), Buffer Under-read (CWE-

127), and Untrusted Pointer Dereference (CWE-822).

The State of Vulnerabilities in Linux Distributions by

CWE 119: Improper Restriction of Operations within the Bounds of a

Memory Buffer

CWE 119 is one of the most prevalent vulnerabilities out there and is even included in

MITRE’s top 25 most dangerous software weaknesses. MITRE describes CWE-119 as

follows: “The software performs operations on a memory buffer, but it can read from

or write to a memory location that is outside of the intended boundary of the buffer.”

Developers using programming languages without memory management support

should be extra cautious and incorporate tools that detect and mitigate these buffer

overflows.

Related weaknesses include Range Error (CWE-118), Classic Buffer Overflow (CWE-

120), and Expired Pointer Dereference (CWE-825).

7The State of Vulnerabilities in Linux Distributions by

CWE 476: Null Pointer Dereference

This occurs when the application dereferences a pointer that it expects to be valid, but

is NULL, typically causing a crash or exit. Developers can avoid such errors by sanity

checking each pointer before use.

Related weaknesses include Unchecked Return Value (CWE-252) and Pointer Issues

(CWE-465).

CWE 787: Out-of-bounds Write

This sits on top of MITRE’s top 25 most dangerous software weaknesses list.

According to MITRE, this vulnerability occurs when “software writes past the end, or

before the beginning, of the intended buffer.”

Related weaknesses include Stack-based buffer overflow (CWE-121), Heap-based

Buffer Overflow (CWE-122), and Access of Uninitialized Pointer (CWE-824).

CWE 20: Improper Input Validation

This is a class-level weakness where the product does not validate or incorrectly

validates the input. Attackers who exploit this vulnerability can craft an input that is not

expected by the rest of the application, leading to unexpected consequences. CWE-20

is among the most commonly found vulnerabilities across all languages.

Related weaknesses include Improper Neutralization (CWE-707), Injection Errors (CWE-

74), and Path Traversal errors (CWE-22).

CWE 200: Exposure of Sensitive Information to an Unauthorized Actor

CWE-200 describes the issue where an application unintentionally exposes private or

sensitive information to users not explicitly authorized. MITRE advises developers to

build compartmentalization into applications so that sensitive data can stay within those

boundaries. As a general rule, developers should adopt principles of least privilege

when granting access to any data within applications.

Related weaknesses include Observable Discrepancy (CWE-203) and Insertion of

Sensitive Information Into Sent Data (CWE-201).

CWE-416: Use After Free

This vulnerability, which occurs when applications reference memory after it has

been freed, can result in corruption of valid data, application crash, or execution of

unauthorized code. The simplest way data corruption may occur involves the system’s

reuse of the freed memory. One potential mitigating practice would be to set all

pointers to NULL as they are freed.

Related weaknesses include Double Free (CWE-415) and Single Handler Race

Conditions (CWE-364).

CWE-399: Resource Management Errors

Per MITRE, CWE-399 refers to a category of weaknesses “related to improper

management of system resources.”

Related weaknesses include Insufficient Resource Pool (CWE-410) and Use of

Uninitialized Resource (CWE-908).

8The State of Vulnerabilities in Linux Distributions by

CWE-264: Permissions, Privileges, and Access Controls

According to MITRE, “weaknesses in this category are related to the management of

permissions, privileges, and other security features that are used to perform access

control.”

Related weaknesses include Permission Issues (CWE-275) and Incorrect User

Management (CWE-286).

9The State of Vulnerabilities in Linux Distributions by

10

Most Common Vulnerabilities: Alpine

CWE-119 CWE-125 CWE-20 CWE-787 CWE-476

328

363

211
229

179

Out-of-bounds Read (CWE-125) and Buffer errors (CWE-119) were the two most

common vulnerabilities in the Alpine distribution, both belonging to the family of buffer

overflows. Out-of-bounds Write (CWE-787) errors were uniquely present in large

numbers in Alpine distributions, so teams using Alpine should proactively check the size

of the buffers they are writing into.

The State of Vulnerabilities in Linux Distributions by

11

Most Common Vulnerabilities: Debian

CWE-119 CWE-20 CWE-125 CWE-79 CWE-200

3413

2124

1450

1244
1136

Debian had the highest number of vulnerabilities by count, and, like the other

distributions we’ve discussed, CWE-119 (Buffer errors) was the most commonly found

vulnerability.

The State of Vulnerabilities in Linux Distributions by

12

Most Common Vulnerabilities: Ubuntu

CWE-119 CWE-20 CWE-125 CWE-416 CWE-200

3227

1794
1681

1750

1539

As expected, Ubuntu and Debian were impacted by similar numbers and types of

vulnerabilities. This is most likely because of the extremely similar package architecture

shared between both distributions. But Ubuntu had a higher number of Use After Free

errors (CWE-416) vulnerabilities than Debian. In light of the large number of buffer errors

(CWE-119) discovered in Ubuntu, developers should consider using static analysis tools

to detect out-of-bound memory operations.

The State of Vulnerabilities in Linux Distributions by

13

Most Common Vulnerabilities: CentOS

CWE-119 CWE-20 CWE-125 CWE-416 CWE-787

1993

1038
944

609
568

CentOS also saw a very high number of Buffer errors (CWE-119), which is expected.

Out-of-bounds Write errors (CWE-787) were more prevalent in CentOS than in similar

distributions (such as Red Hat).

The State of Vulnerabilities in Linux Distributions by

14

Most Common Vulnerabilities: Red Hat

CWE-119 CWE-125 CWE-20 CWE-416 CWE-200

2011

941

1091

612 563

Red Hat and CentOS, not surprisingly, have a similar mix of vulnerabilities. The biggest

difference is that Red Hat sees more Exposure of Sensitive Information errors (CWE-

200), whereas CentOS sees more Out-of-bounds Write errors (CWE 787).

Compared to vulnerabilities in popular languages, the vulnerabilities found in the

above Linux distributions lean more toward buffer overflows, improper input validation,

exposure of sensitive information, and null pointer dereference. This is because there

is less memory safety built into the C and C++ languages, the language of choice for

many Linux system libraries.

The State of Vulnerabilities in Linux Distributions by

CentOS: Trends Over the Years

2020 2019 2018 2017 2016

93

88

118

121

184

114

75

66

145

109

346

392

125

139

83

84

149

137

386

CWE-119 CWE-125 CWE-20 CWE-416 CWE-787

83

15The State of Vulnerabilities in Linux Distributions by

Let’s take a deeper look at the top vulnerabilities in these distributions and see how

they trended over our five-year sample.

16

Alpine: Trends Over the Years

2020 2019 2018 2017 2016

51

62

98

71

25

55

55

49

84

57

129

79

45

21

54

40

46

100

CWE-119 CWE-125 CWE-20 CWE-787 CWE-476

46

24

25

The State of Vulnerabilities in Linux Distributions by

17

Ubuntu: Trends Over the Years

2020 2019 2018 2017 2016

216

276

118

472

264

263

293

220

269

735

355

590

328

311

171

258

740

CWE-119 CWE-20 CWE-125 CWE-200 CWE-416

332

239

178

The State of Vulnerabilities in Linux Distributions by

18

Debian: Trends Over the Years

2020 2019 2018 2017 2016

175
256

158

227

304

265

626

468

261

114

170

240

151

604

CWE-119 CWE-125 CWE-20 CWE-79 CWE-200

104

85

151

120

150

116

The State of Vulnerabilities in Linux Distributions by

19

Red Hat: Trends Over the Years

Clearly, one of the larger storylines from this data is the drop or change in the counts

of the top vulnerabilities in 2019 and 2020. Also, in 2019 and 2020, CWE-125, CWE-

787, and CWE-416 were the most commonly found vulnerabilities. One possible reason

could be that as containers get used in newer workloads and newer applications, the

types of vulnerabilities found might also fluctuate.

2020 2019 2018 2017 2016

90 118

67

66

145

109

346

392

125

139

102

149

137

386

CWE-119 CWE-125 CWE-20 CWE-416 CWE-200

121

84

80

91

75

79

The State of Vulnerabilities in Linux Distributions by

20

Conclusion

Companies across the globe have embraced containerization for a host of reasons,

including increased efficiency, cost-effectiveness, and reduced overhead. But as the

data in this report illustrates, it’s important to take precautions to reduce the risks

posed by vulnerable container images.

One important best practice is to scan your container images for potential

vulnerabilities. It’s generally wise to do this earlier than later, so consider scanning your

images before you even package them.

Another benefit of incorporating container scanning into your regular workflows is

that scanning tools (like FOSSA) not only detect vulnerabilities, but also inventory the

components in your application. This offers visibility into potential software supply chain

threats.

The State of Vulnerabilities in Linux Distributions by

About FOSSA

Up to 90% of any piece of software is from open source, creating countless

dependencies and areas of risk to manage. FOSSA is the most reliable automated

policy engine for security management, license compliance, and code quality across

the open source stack. With FOSSA, engineering, security, and legal teams all get

complete and continuous risk mitigation for the entire software supply chain, integrated

into each of their existing workflows. FOSSA enables organizations like Uber, Zendesk,

Twitter, Verizon, Fitbit, and UiPath to manage their open source at scale and drive

continuous innovation. Learn more at https://fossa.com.

